Analytics Dashboard

Real-time insights into your AI-powered ordering platform

📊 Order Statistics

Total Orders Today 127
Active Sessions 23
Conversion Rate 78.3%
Avg Order Value €24.50
Irish WhatsApp Users 84%
WhatsApp Business Orders 67%
Daily Transaction Increase +43%
Customer Retention Rate 89%

🌍 Global Channel Performance

Walk-in 53%
WhatsApp Orders 32%
Other Channels 15%

🤖 AI Performance

AI Resolution Rate 94.2%
Avg Response Time 1.2s
Customer Satisfaction 4.8/5
Handoff to Human 5.8%

💰 Revenue Insights

Today's Revenue €3,115.50
Weekly Growth +12.4%
Top Product Americano
Peak Hour 2-3 PM

📈 Order Trends

📊 Interactive charts and graphs will be displayed here

Real-time data visualization showing order patterns, peak hours, and performance metrics

🎯 Popular Items

1. Americano 32 orders
2. Cappuccino 28 orders
3. Latte 24 orders
4. Espresso 18 orders
5. Croissant 15 orders

🔬 Advanced Analytics with SageMaker

Leverage AWS SageMaker for advanced machine learning insights on customer behavior, demand forecasting, and personalized recommendations.

📊 Customer Behavior Analysis

import boto3 import pandas as pd from sagemaker import get_execution_role # Initialize SageMaker session sagemaker_session = boto3.Session().client('sagemaker') role = get_execution_role() # Analyze customer ordering patterns def analyze_customer_behavior(order_data): # Customer segmentation using K-means model = create_kmeans_model( instance_type='ml.m5.large', role=role, train_data='s3://serv-analytics/customer-data/' ) # Predict customer lifetime value predictions = model.predict(order_data) return predictions # Real-time recommendation engine recommendations = get_ml_recommendations(customer_id, session_data)
Use SageMaker's built-in algorithms to segment customers and predict ordering patterns for targeted marketing campaigns.

📈 Demand Forecasting

# SageMaker DeepAR for demand forecasting from sagemaker.amazon.amazon_estimator import get_image_uri # Configure DeepAR model for menu item demand prediction deepar_image = get_image_uri(boto3.Session().region_name, 'forecasting-deepar') estimator = sagemaker.estimator.Estimator( image_name=deepar_image, role=role, train_instance_count=1, train_instance_type='ml.c4.2xlarge', sagemaker_session=sagemaker_session ) # Train on historical order data estimator.fit({'training': 's3://serv-analytics/order-history/'}) # Generate 7-day demand forecast forecast = estimator.predict(current_trends)
Predict future demand for menu items to optimize inventory and reduce waste using time-series forecasting.

🚀 ML Insights Available:

  • Customer lifetime value prediction
  • Personalized menu recommendations
  • Inventory optimization forecasting
  • Churn prediction and retention strategies
  • Peak hour demand analysis

Analytics update every 30 seconds • Last updated: